
Introduction 

	 Spinal cord injury (SCI) leads to complex 
cellular and molecular interactions within the central 
nervous system in an attempt to repair the initial 
tissue damage1. The pathophysiology of SCI is 
characterized by the shearing of cell membranes and 
axons, disruption of the blood-spinal cord barrier, 
cell death, immune cell transmigration, and myelin 
degradation2,3. There are two mechanisms of damage 
to the spinal cord after injury: a primary mechanical 
injury and a secondary injury mediated by multiple 
injury processes including inflammation, free radical-
induced cell death, and glutamate excitotoxicity4. 
The primary damage is locally restricted to the area 
of the vertebral fracture and is characterized by acute 
haemorrhage and ischaemia. Secondary insult within 
the first week after injury is characterized by further 
destruction of neuronal and glial cells, and leads 
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to significant expansion of the damage, so that the 
paralysis can extend to higher segments. Deleterious 
factors, such as pro-inflammatory cytokines, proteases 
upregulated by immune cells and toxic metabolites, 
and neurotransmitters which released from lysed cells 
can induce further tissue damage. 

	 While high dose methylprednisolone steroid therapy 
alone has not proved to be the solution to this difficult 
clinical problem, other strategies for modulating 
inflammation and changing the make up of inhibitory 
molecules in the extracellular matrix provided robust 
evidence that rehabilitation after SCI has the potential 
to significantly change the outcome for what was once 
thought to be permanent disability5,6. However, there 
has been no fully restorative therapy for SCI as yet and 
so prevention is the best medicine7. From a clinical 
perspective, this article provides processes of the 
secondary injury and the targets that have the potential 
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to protect the spinal cord from irreversible damage and 
promote functional recovery.

Inflammation after SCI

	 Inflammatory responses are a major component of 
secondary injury and play a central role in regulating 
the pathogenesis of acute and chronic SCI, and seem 
to play a pivotal role in nerve injury and contribute to 
the control of the regenerative response8. Meanwhile, 
inflammatory responses may result in apoptosis 
of neurons and oligodendrocytes as well as in scar 
formation and finally in the reduction of neuronal 
function9. Therefore, it is believed that reducing 
inflammation could decrease secondary degeneration 
and the functional deficit after SCI.

Inflammatory reactions after SCI

	 After spinal cord trauma, ruptured blood vessels 
disturb the blood-brain barrier and the injury site is 
rapidly infiltrated by blood-borne neutrophils. This 
process may contribute to the secondary damage that 
follows the initial primary injury. At 30-45 min post-
SCI, tumour necrosis factor (TNF)-positive cells could 
be seen over the injured spinal cord segment and 
from 3 to 24 h, TNF-α and interleukin-6 (IL-6) were 
strongly upregulated around the contused area10,11. 
The inflammatory cytokine mRNAs were shown to be 
induced as early as 15 min following contusion of rat 
spinal cord, with TNF-α increased first, followed by 
IL-6 mRNA12,13. TNF-α could potentiate glutamate-
mediated neuronal cell death in the rat spinal cord14,15, 
while TNF antagonist reduced the development of 
inflammation and tissue injury events associated with 
SCI16,17. Besides, IL-6 receptor monoclonal antibody 
treatment suppressed the astrocytic differentiation, 
decreased the number of inflammatory cells and the 
severity of connective tissue scar formation18,19. In 
studies, hyper-IL-6 infusion induced a six-fold increase 
in the number of neutrophils, a two-fold increase in the 
areas of spinal tissue occupied by macrophages and 
activated microglia and a four-fold decrease in axonal 
growth at the lesion site20,21. 

	 Increased production of cytokines of the IL-1 
family, such as IL-1α, is well documented, providing 
clear evidence for a pivotal role of this cytokine in 
triggering SCI-induced inflammatory processes22-24. 
IL-1α and IL-18 are potent mediators of inflammation 
and initiate and/or amplify a wide variety of effects 
associated with innate immunity, host responses to 
tissue injury, and microbial invasion. Moreover, it 
has been speculated that the inflammasome is kept 

in an inactive state in normal tissues by binding to 
a putative caspase-1 inhibitor, but the nature of this 
inhibitor has not been described25. The study showed 
that a molecular platform (NALP1 inflammasome) 
consisting of NALP1, adipose-derived stem cell 
(ASC), caspase-1, and caspase-11 was present in 
neurons of the normal rat spinal cord and formed 
a protein assembly with the inhibitor of apoptosis 
family member, X-linked inhibitor of apoptosis 
protein (XIAP). And SCI induced rapid processing 
of IL-1α and IL-18, activation of caspase-1, cleavage 
of XIAP, and promoted assembly of the NALP1 
inflammasome. Further, neutralization of ASC 
reduced caspase-1 activation and XIAP cleavage and 
decreased processing of IL-1α and IL-18, leading to 
improved histopathological and functional outcomes 
after SCI26. 

	 Central nervous system inflammatory responses 
that occur after SCI are initiated by peripherally derived 
immune cells, and activated glial cells that proliferate 
or migrate into the lesion site following injury27. 
T-cells are essential for activating macrophages and 
mounting a cellular or immune response. In rats, SCI 
activates myelin basic protein (MBP)-reactive T cells 
capable of causing neuron-inflammation and transient 
paralysis. In SCI, the frequency of MBP-reactive T 
cells increases, reaching levels that approximate 
those seen in multiple sclerosis (MS) patients. The 
pathogenic potential of SCI-activated B cells still 
remains to be directly tested, but early indications 
suggested that B cells also were pathological16. 
Data from other models also confirmed a direct link 
between primary CNS pathology and peripheral 
lymphocyte activation. Once lymphocytes gain access 
to the injury site, they persist indefinitely. Indeed, T 
and B cell numbers increase in the mouse SCI lesion 
through at least 9 wk post-injury1. Macrophages and 
neutrophils have also been proposed to participate 
in tissue destruction and enlargement of the lesion. 
Macrophages and microglia contribute to the 
secondary pathological and inflammatory response, in 
part through the release of cytokines, TNF, IL-1, IL-6, 
and IL-1028, interferon, and activation of interleukin 
receptors (IL-4R and IL-2R). Cytokines facilitate 
CNS inflammatory responses by inducing expression 
of additional cytokines, chemokines, nitric oxide 
(NO), and reactive oxygen. Based on the presence and 
position of the first cysteine residues, the chemokines 
have been divided into four subgroups, i.e., CC, XC, 
CX3C and CXC29. 
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Molecules acting as anti-inflammatory agents

	 It has been indicated that in various types of injuries, 
some molecules act as anti-inflammatory agents and 
regulate invasive migration of immune cells to the site 
of damage. Many of anti-inflammatory agents could 
have potential also in the elimination of the secondary 
damage after SCI6. Based on the observation that the 
protective effects of gluococorticoids were independent 
on their receptors, a new group of steroid analogues, 
lazaroids, were developed. These analogues inhibit lipid 
peroxidation without glucocorticoid/mineralocorticoid 
activity and in such a way avoid the complications of 
steroid therapy. Accordingly, aminosteroid lazaroid 
U-74389G reduced the production of systemic and 
spinal IL-8 (neutrophile attractant and activator) as 
well as systemic interleukin-1 receptor antagonist (IL-
1ra) after SCI induced by aortic cross-clamping. This 
report indicates that lazaroid may attenuate ischaemic 
endothelial cell injury or activation of leukocytes 
effect30. Moreover, neutrophil infiltration to the site of 
injured spinal cord could be eliminated by specific and 
potent neutrophil elastase inhibitor ONO-504631. It was 
shown that spinal cord compression increased CINC-1 
mRNA expression and protein synthesis. CINC-1 is 
a neutrophil chemoattractant and acute-phase protein 
induced by focal brain injury causing leukocyte 
mobilization and liver injury. This increase correlates 
with neurologic damage in injured rats. March et al32 
showed that ONO-5046 attenuated neurologic damage 
partly by blocking CINC-1 production. In addition, 
sphingosine-1-phosphate (Sph-1-P) could act as a 
specific and an effective motility regulator of human 
neutrophils. It was demonstrated that Sph-1-P inhibited 
trans-endothelial migration and invasiveness of 
neutrophils into human umbilical vein endothelial cells 
(HUVEC)-covered collagen layers, while no effect on 
their adhesion to HUVECs was observed. Although 
the mechanism of its action is not yet fully understood, 
this result indicates that Sph-1-P has the potential to 
be used as anti-inflammatory agent regulating invasive 
migration of neutrophils through endothelial layers at 
injured vascular site22.

	 A novel phosphoprotein, proliferation related acidic 
leucine-rich protein (PAL31) has been identified in the 
nervous system, and its expression gradually declines 
with the developmental process and is rarely expressed 
in the adult nervous system, including the spinal cord. 
In addition to the function in proliferation, PAL31 could 
act as a caspase-3 inhibitor, which might negatively 
regulate the expression of macrophage chemoattractant 

protein 1 (MCP-1) and signal transducer and activator 
of transcription-1 (STAT-1) and rescue macrophages 
from apoptosis during an inflammatory response33. 
Besides, alleviation of this damage-induced signal in 
the repair-model SCI rat showed a good correlation 
with better recovery of damage spinal cords, and 
PAL31 might behave like an inflammatory modulator 
in response to the regeneration process in SCI 
rats34. Most interestingly, knockdown of PAL31 in 
macrophages triggered apoptosis in cells stimulated 
with interferon (IFN-γ) or lipopolysaccharide (LPS), 
which suggested that PAL31 might play an important 
role in maintaining the survival of macrophage in the 
presence of inflammatory stress9.

Apoptosis after SCI

	 Apoptosis of targeted cells within a tissue is 
mediated by activation of cell signaling that results 
from either engagement of the apoptotic stimuli and 
cell surface death receptors or from direct disruption 
of the mitochondria and the subsequent activation of a 
proteolytic cascade involving executioner caspases35-37. 
In apoptosis, a biochemical cascade activates proteases 
that destroy molecules required for cell survival and 
others that mediate a programme of cell suicide. During 
the process, the cytoplasm condenses, mitochondria 
and ribosomes aggregate, the nucleus condenses, and 
chromatin aggregates38. Other features of apoptosis 
are reduction in the membrane potential of the 
mitochondria, intracellular acidification, generation of 
free radicals, and externalization of phosphatidylserine 
residues39.

	 Apoptosis, as demonstrated by nuclear DNA 
fragmentation and caspase activation, was a prominent 
feature in the spinal cord post SCI. After SCI, some 
cells at the lesion site die by post-traumatic necrosis, 
whereas others die by apoptosis40. Apoptotic cell death 
was observed in both neurons and oligodendrocytes 
and was prominent in the white matter, in which 
wallerian degeneration was simultaneously observed. 
Thus, apoptosis of both neurons and oligodendrocytes 
may contribute greatly to the paralysis of patients with 
SCI41,42.

Processes of apoptosis after SCI

	 A time course analysis in rats revealed that 
apoptosis occurred as early as 4 h post injury and 
could be seen in decreasing amounts as late as 3 
wk after SCI42. After SCI, caspase activation occurs 
in neurons at the injury site within hours, and in 
oligodendrocytes adjacent to, and distant from, the 
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injury site over a period of days. The long-term 
neurological deficits after spinal cord trauma may be 
due in part to widespread apoptosis of neurons and 
oligodendroglia in regions distant from and relatively 
unaffected by the initial injury. 

	 The major executioners in the apoptotic programme 
are proteases known as caspases43. The caspase 
family of cysteine proteases regulates the execution 
of the mammalian apoptotic cell death programme. 
Caspase-3 cleaves several essential downstream 
substrates involved in the expression of the apoptotic 
phenotype in vitro, including gelsolin, PAK2, fodrin, 
nuclear lamins and the inhibitory subunit of DNA 
fragmentation factor. Caspase-3 activation in vitro 
can be triggered by upstream events, leading to the 
release of cytochrome c from the mitochondria and 
the subsequent transactivation of procaspase-9 by 
Apaf-1. These upstream and downstream components 
of the caspase-3 apoptotic pathway are activated after 
traumatic spinal cord injury in rats, and occur early 
in neurons in the injury site and hours to days later in 
oligodendroglia adjacent to and distant from the injury 
site44,45. 

	 Caspase-8 and 9 are the initiator caspases in the 
death receptor and the mitochondrial dependent 
pathways, respectively, and their activation is a tightly 
regulated process46. Downstream effector caspases like 
caspase-3 are subsequently activated via proteolytic 
cleavage by these initiator caspases47. The inhibitor of 
caspase-activated deoxyribonuclease, the Bcl-2 family 
of proteins, cytoskeletal proteins like gelsolin, focal 
adhesion kinase and p21-activated kinase, and proteins 
involved in DNA repair, mRNA splicing and DNA 
replication48,49 are some key proteins among the over 
forty target substrates for caspase-3 that have been 
identified to date. 

	 Seminal studies have identified several genes that 
control cell death, in which four genes are required for 
the orderly execution of the developmental apoptotic 
programme, including ced-3 (caspases), ced-4 (Apaf-1), 
and egl-1 (BH3-only proteins)50. By contrast, ced-9 
(Bcl-2) was indicated as an inhibitor of apoptosis51. 

Mediators of cellular apoptosis 

	 SCI pathology results from complex interactions 
between different cell types and secreted molecules 
in a time-dependent manner. SCI leads to increased 
expression of death receptors and their ligands as well 
as activation of caspases and calpain. 

	 Oxidants have, and continue to receive much 
attention as triggers of apoptosis. Studies have focused 
on the mechanisms by which H2O2 modulates the 
apoptotic pathway given the pivotal role that H2O2 
plays in ischaemia/reperfusion injury to cerebral 
microvasculature and neuronal cells52. An integrated 
model of H2O2-mediated cellular apoptosis is 
unresolved although existing evidence implicates 
H2O2 in apoptosis initiation in both the mitochondrial 
and the death receptor signaling pathways. The more 
popular paradigm supports H2O2 as a mediator of 
mitochondrial membrane potential collapse that leads 
to the release of cytochrome c and the activation of 
caspase-9. Mitochondrial as well as extramitochondrial 
systems, such as cytoplasmic cytochrome P-450 and 
membrane bound NADPH oxidase are examples of 
physiologically relevant H2O2 sources52.

	 The glutathione/glutathione disulphide (GSH/
GSSG) redox system is a major contributor to the 
maintenance of the cellular thiol redox status. Evidence 
showed that decrease in cell GSH was associated with 
enhanced cellular apoptosis while increases in GSH 
were associated with expression of the anti-apoptotic 
protein, Bcl-253. In more recent studies, they showed that 
it was the change in cellular GSH-to-GSSG ratio rather 
than changes in GSH per se that specifically mediated 
cell apoptosis and that this redox imbalance induced 
apoptosis was preceded by caspase-3 activation54. The 
two identified targets for redox control in apoptotic 
signaling are the mitochondrial permeability transition 
and caspases35.

	 Current evidence shows TNFα, a proinflammatory 
cytokine which is best known for its role in immune 
and vascular responses, can induce apoptosis in non-
immune tissues via the death domain of its cell surface 
receptor, TNF-R1. However, there are conflicting 
reports as to the role of cell death in SCI that probably 
reflect the known capacity of TNF to be both pro- and 
anti-apoptotic54-56.

	 Fas-mediated neuronal and oligodendroglial 
apoptosis through the mitochondrial signaling pathway 
could be an important event that might ultimately 
contribute to demyelination, axonal degeneration 
and neurological dysfunction after SCI57. Preventing 
the activation of Fas-mediated cell death using 
neutralization of endogenous FasL is, therefore, a 
highly relevant neuroprotective approach, and warrants 
further investigation. Yu et al58 showed that Fas-
mediated apoptosis could be amplified by the intrinsic 
mitochondrial pathway after SCI.
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Inhibitors of apoptosis 

	 To control aberrant caspase activation, which can 
kill the cell, additional molecules inhibit caspase-
mediated pathways. Among these are proteins known 
as inhibitors of apoptosis. These inhibitors interact 
directly with modulators of cell death. For example, 
the X-linked inhibitor of apoptosis and the neuronal 
inhibitor of apoptosis are proteins in neurons that 
directly inhibit caspase-3 activity and protect neurons 
from ischaemic injury39,59. 

	 The inhibitor of apoptosis protein (IAP) family of 
anti-apoptotic proteins, which are conserved across 
evolution with homologues found in vertebrate and 
invertebrate species, have a key function in the 
negative regulation of programmed cell death in a 
variety of organisms. Several mammalian homologues 
(XIAP, cIAP-1, cIAP-2, NAIP, Bruce, Survivin, 
and pIAP) have been identified, most of which have 
been demonstrated to inhibit cell death. Although 
the biochemical mechanism by which IAP-family 
proteins suppress apoptosis is controversial, at least 
some of the human IAPs (XIAP, cIAP-1, and cIAP-2) 
have been reported to directly bind and inhibit certain 
caspases, including caspases-3, -7 and -9. Thus, IAPs 
can inhibit caspases within both the death receptor and 
mitochondrial pathways. During apoptosis induced 
by the TNF family member Fas, XIAP is cleaved, 
separating the BIR1-2 domains from the BIR3-Ring 
domain. The BIR1-2 fragment is capable of inhibiting 
active caspases-3 and -7, but it is turned over rapidly in 
cells. Thus, cleavage of XIAP may be a mechanism for 
lowering the threshold of caspase activity necessary 
for inducing apoptosis60.

Therapy

	 Since inflammation contributes to both constructive 
and neurodestructive processes, a more thorough 
understanding of the autoimmune events that occur 
following SCI may allow us to develop strategies that 
will harness the beneficial effects of inflammation 
and, hopefully, help to promote functional recovery. A 
number of experimental studies have been performed to 
establish a strategy for treatment of SCI, using surgical, 
pharmacological, and physiologic methods61-64. Although 
several chemical agents have been found to prevent 
neuronal tissue damage after SCI, a few can reduce 
the degree of neuronal damage or improve functional 
recovery after SCI. New methods of treatment of SCI 
that yield marked improvement of neurologic deficits 
without side effects are thus required65,66.

Anti-inflammation strategies 

	 Because multiple harmful substances are involved 
in the secondary SCI, it is unlikely that blocking one 
substance or mechanism would significantly prevent 
the course of secondary injury. Recently, several 
laboratories have shown remarkable protection and 
recovery of function in models of spinal cord injury 
using treatments that target components of the CNS 
inflammatory response. 

	 A candidate molecule that could serve as a 
common or converging mediator for the secondary SCI 
is phospholipase A2 (PLA2)67, which could be induced 
by multiple harmful substances including inflammatory 
cytokines, free radicals68, and excitatory amino acids69-71, 
and its metabolic products are involved in multiple 
injury processes. Meanwhile, increased levels of PLA2 
and their metabolites may also induce inflammation, 
oxidation, and neuron toxicity72, which could further 
exacerbate the injury. 

	 Many of the pharmacologic approaches to SCI 
have been aimed at cell death caused by excitatory 
amino acids (EAAs). However, for a variety of possible 
reasons, clinical trials of EAA antagonists have not been 
efficacious73. The recently reported studies illustrate 
new therapeutic approaches that might be effective, 
at least in part, by interfering with the acute CNS 
inflammatory cascade. It was shown that injury induced 
the immune receptor CD95 and that blockade of this 
receptor produced a better recovery after experimental 
SCI in mice74. Meanwhile, an antibiotic tetracycline 
derivative, minocyline, that has anti-inflammatory and 
anti-apoptotic actions provided substantial sparing of 
both neurons and glial cells and also resulted in better 
neurological outcomes in two different SCI models in 
rats75-77. Another recent paper reports a novel effective 
treatment that reduces the NO release that is associated 
with acute inflammation after SCI78. The effects on 
apoptosis were manifest hours to days later, but there 
were also effects on lesion size, which were perhaps 
due to reductions in acute necrotic cell death79. The 
results of each study indicated a reduction of axonal 
‘dieback’ and hinted at enhanced regeneration. 

	 Lipid peroxidation (LP) is one of the most 
harmful mechanisms developed after SCI. Several 
strategies have been explored in order to control this 
phenomenon. Protective autoimmunity (PA) is in fact 
a new concept that refers to an innovative approach 
where autoreactive mechanisms are modulated in order 
to promote neuroprotection. In light of this concept, 
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immunization with neural-derived antigens has shown 
to modulate this autoreactive response and to render 
protective and restorative effects after SC injury80-82. 
For instance, a study demonstrated that immunization 
with neural-derived peptides induces a better motor 
recovery compared to control animals83. The same study 
showed that this strategy improves neuronal survival 
and myelin preservation in SC-injured rats84,85. 

	 The use of minocycline, an antibiotic that reduces 
microglial activation, antibody blockade of the CD95 
(FAS) ligand and the blockade of glycosphingolipid-
induced iNOS (inducible nitric oxide synthase) 
has recently been shown to reduce neuronal and 
glial apoptosis with concomitant improvement in 
neurological function, and to enhance the efficacy of 
cell transplantation strategies79. Dexmedetomidine is 
a highly selective and potent adrenergic agonist that 
is increasingly being used as an adjunct for general 
anaesthesia86,87. Use of dexmedetomidine as an 
anaesthetic adjunct does not change somatosensory 
or motor-evoked potential responses during complex 
spine surgery by any clinically significant amount88. 
Dexmedetomidine is found to be safe and effective 
in various neuraxial and regional anaesthetics in 
humans89.90. Methylprednisolone is often used in the 
setting of acute SCI with anti-inflammatory properties 
that were thought to reduce spinal cord oedema91. 

Anti-apoptotic strategies

	 Better understanding of the molecular and cellular 
mechanisms of neuronal apoptosis has led to the 
identification of specific drug targets. The short-term 
necrotic damage seems to set up the conditions for 
longer-term apoptosis in a way that reflects the pattern 
of axonal loss92,93. 

	 One approach is to block the apoptotic trigger, 
and other approaches target early premitochondrial 
alterations, such as drugs that scavenge free radicals, 
block calcium influx into neurons or inhibit the activity 
of Par-494. Activation of anti-apoptotic pathways by 
treatment with neurotrophic factors is another approach. 
Moreover, within the nervous system, IAPs have been 
shown to protect some types of neurons from insults 
often associated with ischaemia. Virus-mediated 
overexpression of NAIPor XIAP can prevent ischaemic 
neuronal loss in the hippocampus. Conversely, in 
severe spinal muscular atrophy the neuron-specific 
inhibitor of apoptosis, NAIP, is often dysfunctional due 
to missense and truncation mutations, suggesting that 
NAIP mutations may alter development of sensory and 

motor systems resulting in lethal muscular atrophy95. 
Excitatory amino acids appear to act on surviving 
neurons and oligodendrocytes and to promote 
autodestructive changes after SCI. The findings 
indicated that the N-methyl-D-aspartate (NMDA) 
receptor antagonist MK-801 could reduce apoptosis 
and reverse motor impairment following SCI96. 

Therapy of stem cells and genes

	 The functions of stem cell factor in the nervous 
system have not yet been fully elucidated, while the 
patterns of expression of both stem cell factor and 
c-kit have been well studied. It has recently been 
reported that stem cell factor functions as a survival 
factor for neural stem cells in vitro97. The study 
found that upregulation of stem cell factor and c-kit 
expression occurred after SCI, and that stem cell factor 
administration prevented neuronal cell apoptosis after 
SCI. Meanwhile, cytokines could play an important 
role in the signal network of an inflammatory response 
in tissue scar formation following SCI98. Pearse et al92 
found that increases in cAMP enhanced the efficacy 
of Schwann cell transplants on recovery, but only if 
the cAMP levels were increased acutely after injury. 
And cAMP given acutely dramatically reduced the 
production of the inflammatory cytokine TNF-α.

	 Further, micro RNA (miRNA) and small interfering 
RNA (siRNA) mediated RNA interference (RNAi) is 
considered to be a valuable tool for silencing of each 
gene in eukaryotes in post-transcriptional manner. Wu et 
al99 successfully used plasmids containing pre-miRNA 
sequences to knock-down the CCR1 gene expression in 
MCCLM3 cells resulting in inhibition of cell invasion. 
Similarly Miyazaki et al100 showed that downregulated 
CXCL5 expression using RNAi decreases proliferation 
and invasion ability of squamous cell carcinoma. In 
spite of the fact that RNAi was already used to reduce 
the expression of chemokine genes as well as genes of 
chemokine receptors, this approach was not yet used in 
the field of SCI research101,102.

Conclusion 

	 This review has discussed the major issues 
associated with inflammatory process and apoptosis in 
spinal cord injury. SCI is a devastating condition for 
which there is as yet no cure. With the identification of 
mechanisms that either promote or prevent spinal cord 
inflammation and apoptosis come new approaches 
for preventing and treating spinal cord injury. And an 
understanding of the basic secondary pathophysiologic 
processes outlined above provides the basis for current 
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therapy, and in addition, provides a framework for the 
development of new treatment strategies. Meanwhile, 
cellular, molecular and rehabilitative training therapies 
are being developed and some are now in, or moving 
towards, clinical trials. Nevertheless, work remains to 
be done to ascertain whether any of these therapies can 
safely improve outcome after human SCI. 
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